Trustworthy Al Systems

-- Pretrained Foundation Model

Instructor: Guangjing Wang

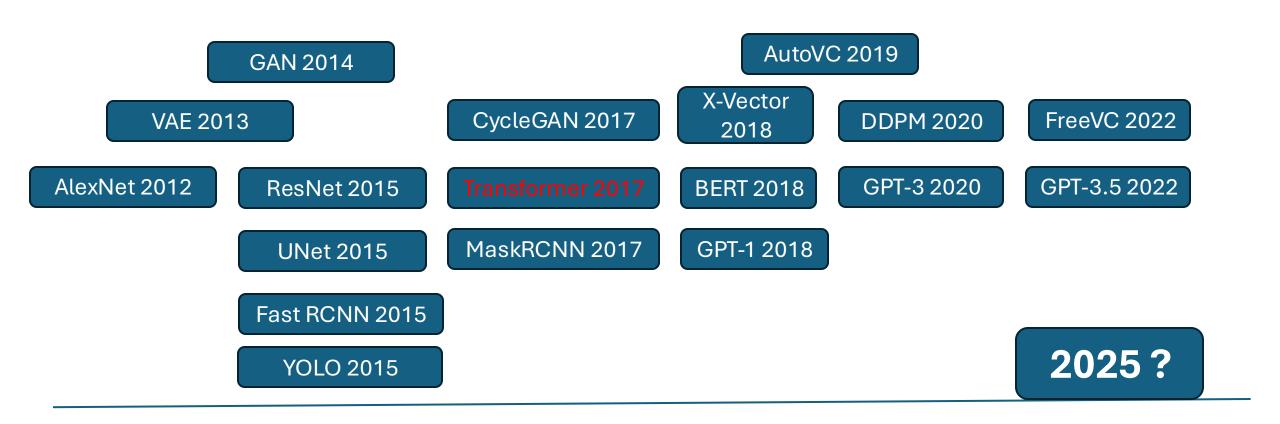
guangjingwang@usf.edu

Last Lecture

Voice Conversion

- Non-disentangle-based methods
 - Statistics-based methods
 - Generative-based methods
- Disentangle-based methods
 - Instance normalization
 - Quantization

Advertising: Agentic AI in Spring 2026



This Lecture

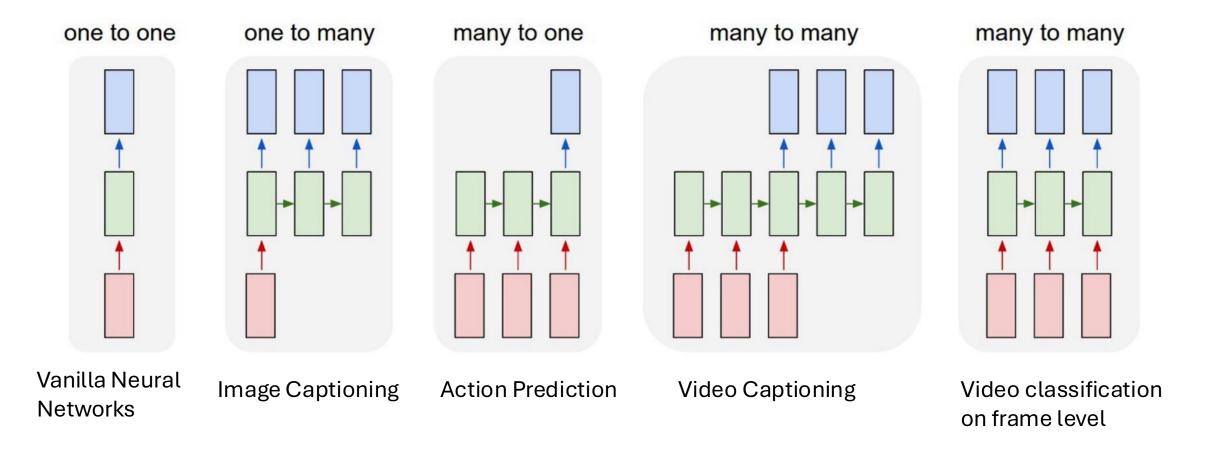
Recurrent Neural Network

Attention

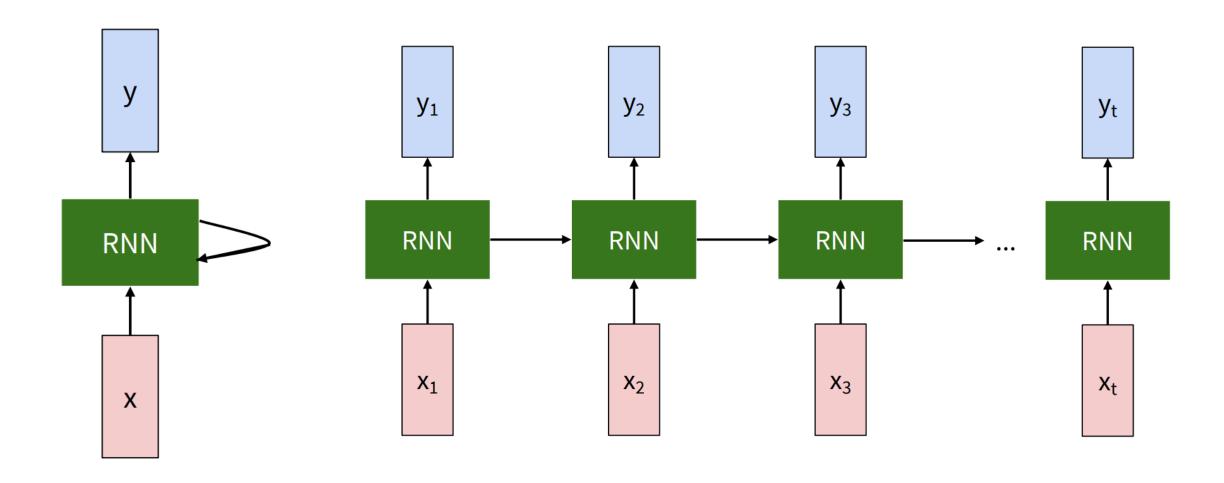
Transformer

Pretrained Foundation Model

Recurrent Neural Network

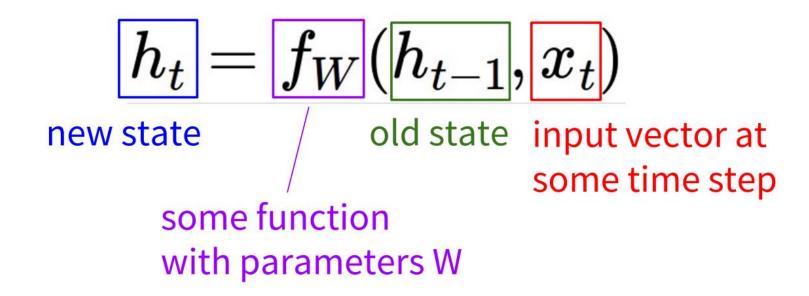


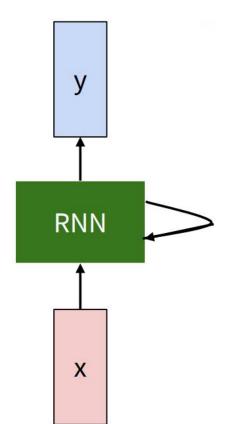
Recurrent Neural Network



RNN Hidden State Update

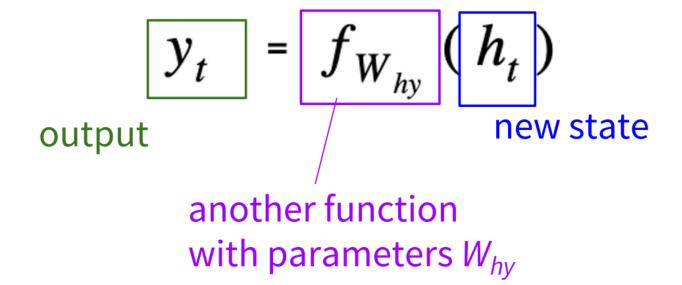
We can process a sequence of vectors x by applying a recurrence formula at every time step:

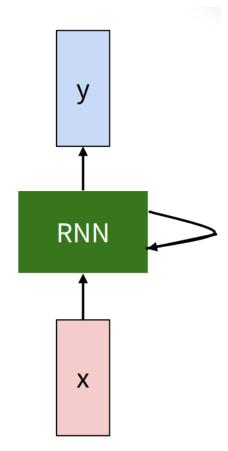




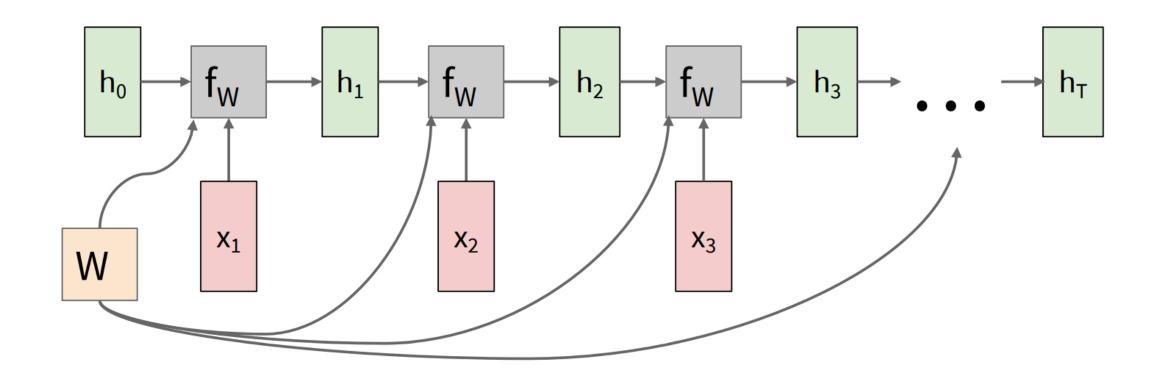
RNN Output Generation

We can process a sequence of vectors x by applying a recurrence formula at every time step:



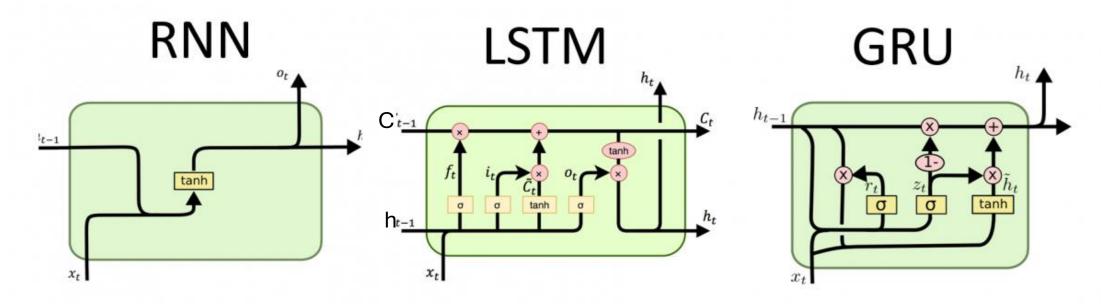


RNN: Computational Graph



Notice: the same function and the same set of parameters (same weight matrix) are used at every time step.

RNN Variants



http://dprogrammer.org/rnn-lstm-gru (expired)

https://medium.com/analytics-vidhya/rnn-vs-gru-vs-lstm-863b0b7b1573

Sequence to Sequence with RNNs

Decoder: $s_t = g_{U}(y_{t-1}, s_{t-1}, c)$ **Input**: Sequence $x_1, \dots x_T$ Output: Sequence y₁, ..., y_T vediamo il cielo [STOP] From final hidden state predict: Initial decoder state s₀ **Encoder:** $h_t = f_W(x_t, h_{t-1})$ Context vector c (often c=h_T) h_2 h_4 s_0 the [START] vediamo cielo sky we

> During training, we use the "correct" token even if the model is wrong.

see

RNN Tradeoffs

RNN Advantages:

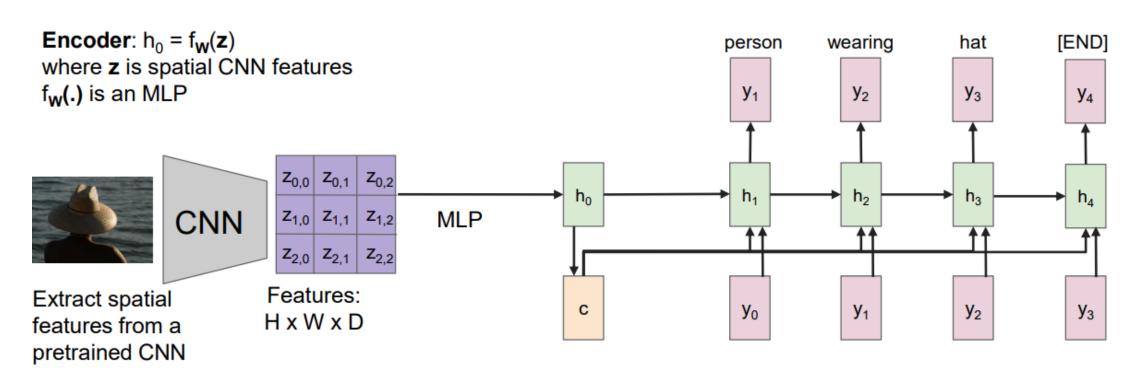
- Can process any length of the input
- Computation for step t can (in theory) use information from many steps back
- Model size does not increase for longer input
- The same weights are applied on every timestep, so there is symmetry in how inputs are processed.
- RNN Disadvantages:
 - Recurrent computation is slow
 - In practice, difficult to access information from many steps back

Image Captioning using Spatial Features

Input: Image I

Output: Sequence $y = y_1, y_2,..., y_T$

Decoder: $h_t = g_V(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$ and output $y_t = T(h_t)$



This Lecture

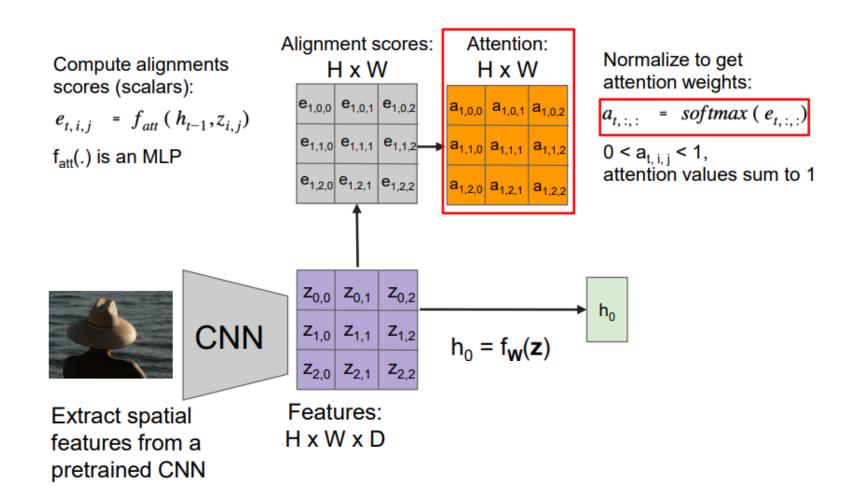
Recurrent Neural Network

 Attention: the relative importance of each component in a sequence

Transformers

Pretrained Foundation Model

Image Captioning with RNNs and Attention



Compute context vector:

$$c_t = \sum_{i,j} a_{t,i,j} z_{t,i,j}$$

Image Captioning with RNNs and Attention

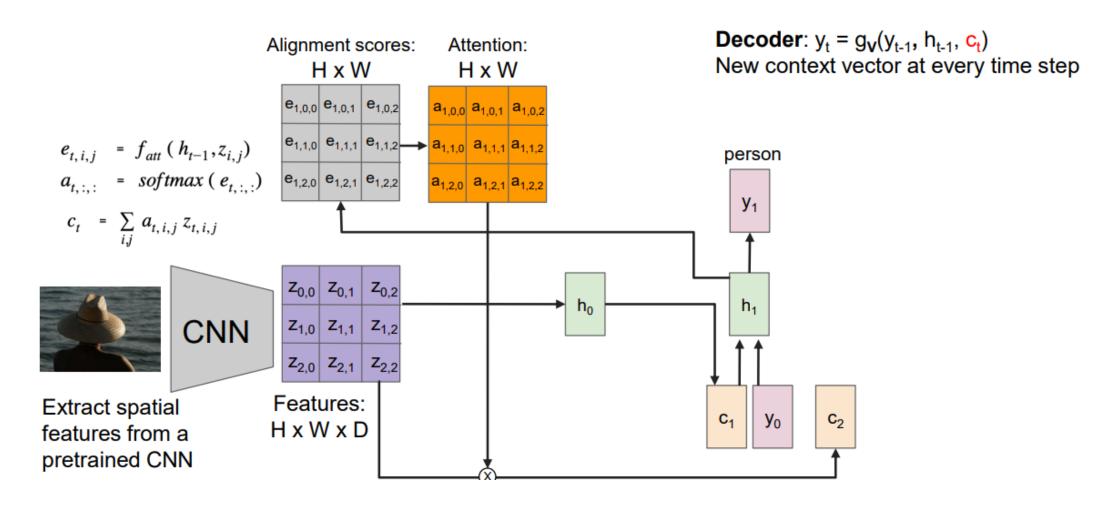
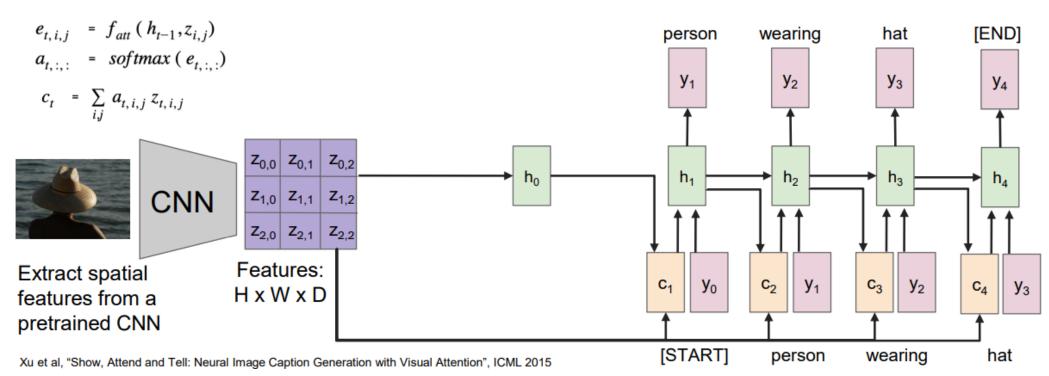


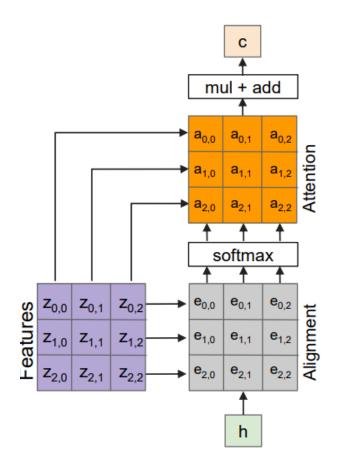
Image Captioning with RNNs and Attention

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Decoder: $y_t = g_V(y_{t-1}, h_{t-1}, c_t)$ New context vector at every time step



Attention in Image Captioning



Outputs:

context vector: c (shape: D)

Operations:

Alignment: $e_{i,j} = f_{att}(h, z_{i,j})$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{c} = \sum_{i,j} a_{i,j} z_{i,j}$

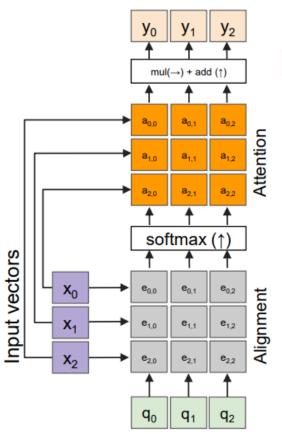
Inputs:

Features: z (shape: H x W x D)

Query: h (shape: D)

"query" refers to a vector used to calculate a corresponding context vector.

General Attention Layer (1)



Each query creates a new, corresponding output context vector

Outputs:

context vectors: **y** (shape: D)

Operations:

Alignment: $e_{i,j} = q_j \cdot x_i / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $y_i = \sum_i a_{i,i} x_i$ Change f_{att}(.) to a scaled simple dot product

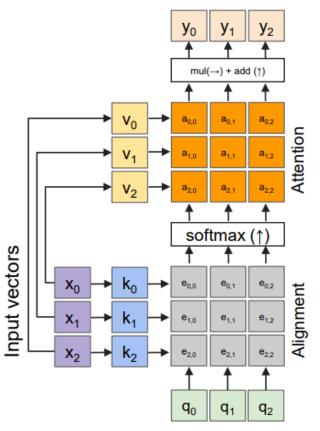
- Larger dimensions means more terms in the dot product sum.
- So, the variance of the logits is higher. Large magnitude vectors will produce much higher logits.
- So, the post-softmax distribution has lowerentropy, assuming logits are IID.
- Ultimately, these large magnitude vectors will cause softmax to peak and assign very little weight to all others
- Divide by √D to reduce effect of large magnitude vectors
- Similar to Xavier and Kaiming Initialization!

Inputs:

Input vectors: \mathbf{x} (shape: N x D) Attention operation is permutation invariant, so reshape. Queries: \mathbf{q} (shape: M x D)

Multiple query vectors

General Attention Layer (2)



Outputs:

context vectors: **y** (shape: D_v)

Operations:

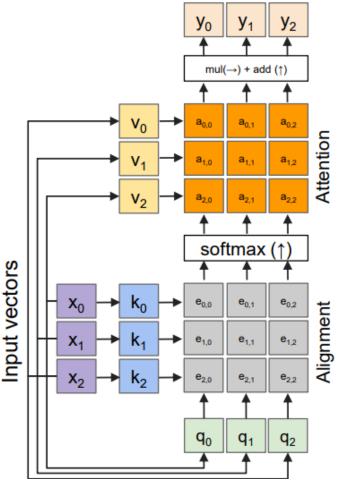
Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_{j} \cdot \mathbf{k}_{i} / \sqrt{D}$ Attention: $\mathbf{a} = \operatorname{softmax}(\mathbf{e})$ Output: $\mathbf{y}_{i} = \sum_{i} \mathbf{a}_{i,i} \mathbf{v}_{i}$ We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs:

Input vectors: \mathbf{x} (shape: N x D) Queries: \mathbf{q} (shape: M x D_k)

Self-attention Layer

Permutation equivariant: Self-attention layer doesn't care about the orders of the inputs!



Outputs:

context vectors: **y** (shape: □_v)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Query vectors: $\mathbf{q} = \mathbf{x} \mathbf{W}_{\mathbf{q}}$ Alignment: $\mathbf{e}_{\mathbf{i},\mathbf{j}} = \mathbf{q}_{\mathbf{j}} \cdot \mathbf{k}_{\mathbf{i}} / \sqrt{D}$ Attention: $\mathbf{a} = \operatorname{softmax}(\mathbf{e})$ Output: $\mathbf{y}_{\mathbf{i}} = \sum_{\mathbf{i}} \mathbf{a}_{\mathbf{i},\mathbf{i}} \mathbf{v}_{\mathbf{i}}$

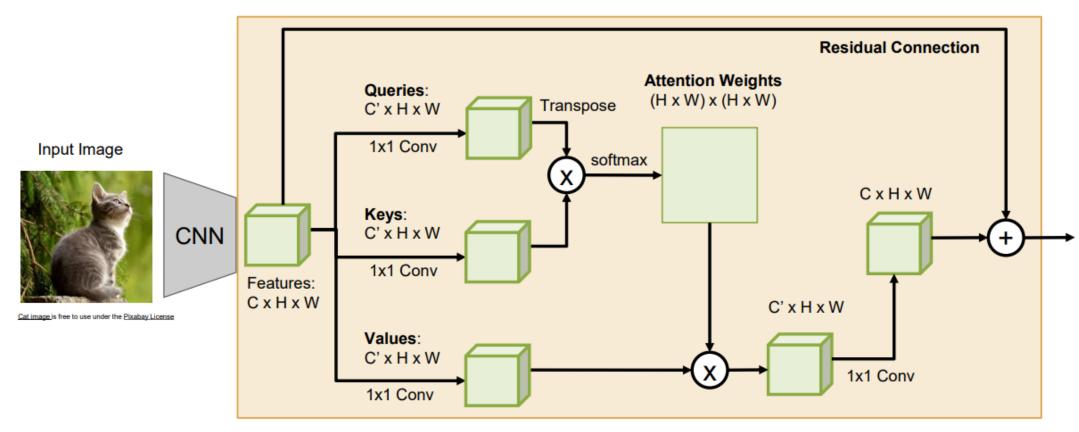
We can calculate the query vectors from the input vectors, therefore, defining a "self-attention" layer.

Inputs:

Input vectors: **x** (shape: N x D)

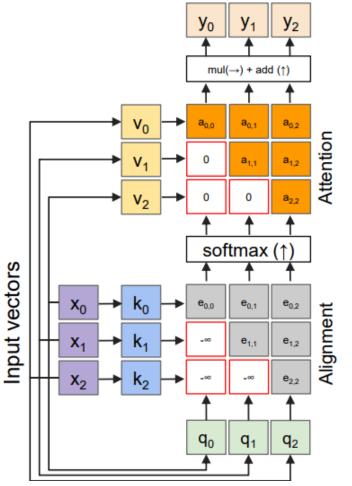
No input query vectors anymore

CNN with Self-Attention



Self-Attention Module

Masked self-attention layer



Outputs:

context vectors: **y** (shape: □_v)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Query vectors: $\mathbf{q} = \mathbf{x} \mathbf{W}_{\mathbf{q}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_j \cdot \mathbf{k}_i / \sqrt{D}$ Attention: $\mathbf{a} = \operatorname{softmax}(\mathbf{e})$ Output: $\mathbf{y}_i = \sum_i \mathbf{a}_{i,j} \mathbf{v}_i$

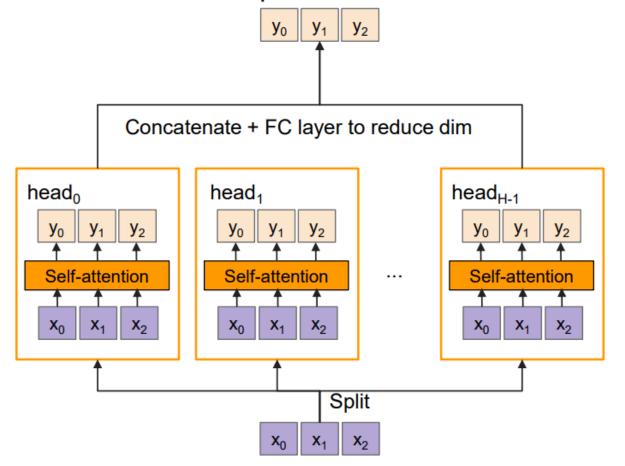
Inputs:

Input vectors: x (shape: N x D)

- Allows us to parallelize attention across time
- Don't need to calculate the context vectors from the previous timestep first!
- Prevent vectors from looking at future vectors.
- Manually set alignment scores to –infinity (-nan)

Multi-head self-attention layer

- Multiple self-attention "heads" in parallel

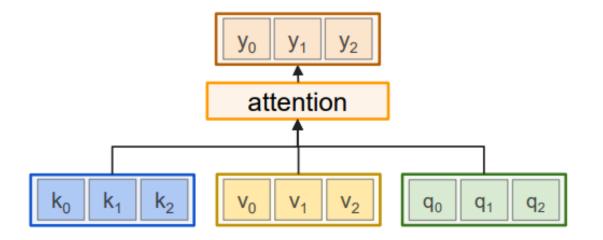


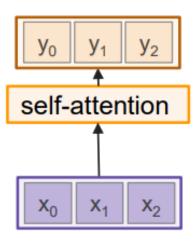
Why multi-head?

A: We may want to have multiple sets of queries/keys/values calculated in the layer. This is a similar idea to having multiple conv filters learned in a layer

General attention versus self-attention

Transformer models rely on many, stacked self-attention layers





This Lecture

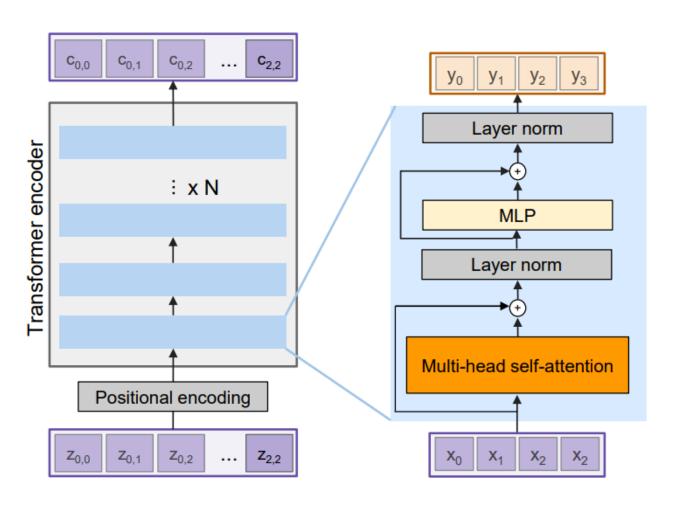
Recurrent Neural Network

Attention

Transformer

Pretrained Foundation Model

The Transformer encoder block



Transformer Encoder Block:

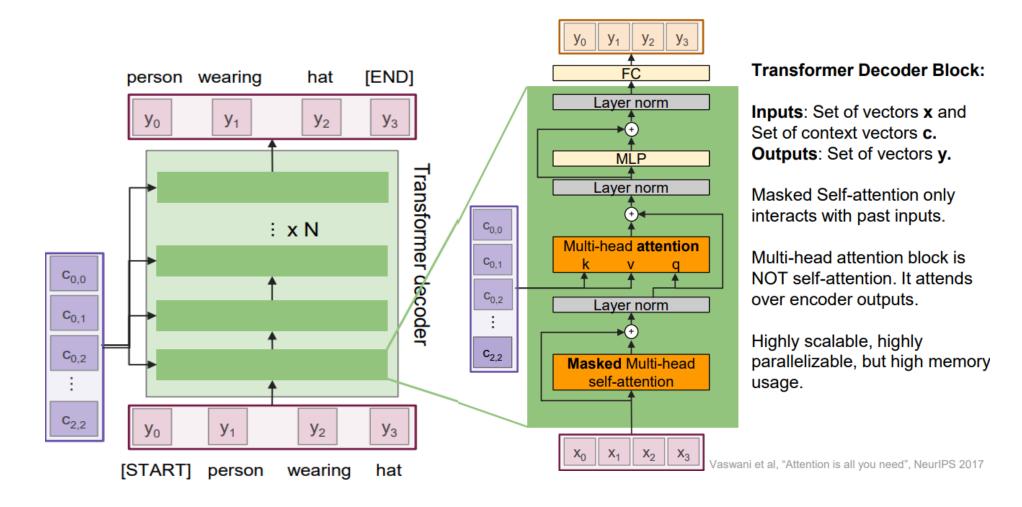
Inputs: Set of vectors **x**Outputs: Set of vectors **y**

Self-attention is the only interaction between vectors.

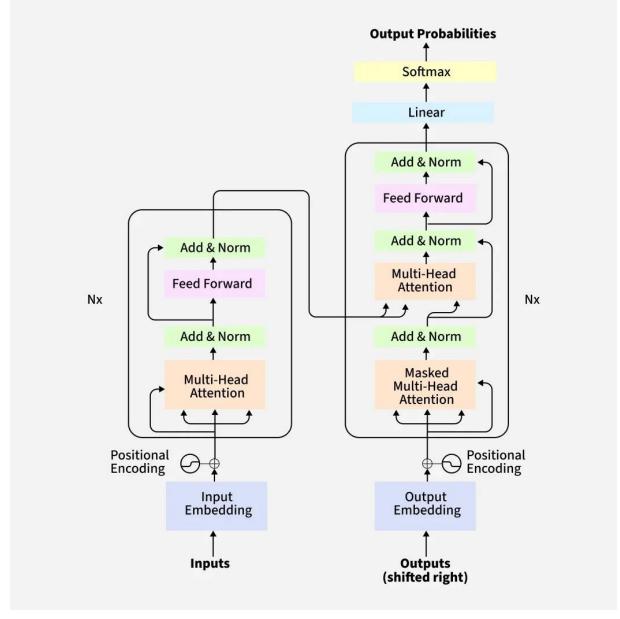
Layer norm and MLP operate independently per vector.

Highly scalable, highly parallelizable, but high memory usage.

The Transformer decoder block



Transformer



https://www.geeksforgeeks.org/deep-learning/rnn-vs-lstm-vs-gru-vs-transformers/

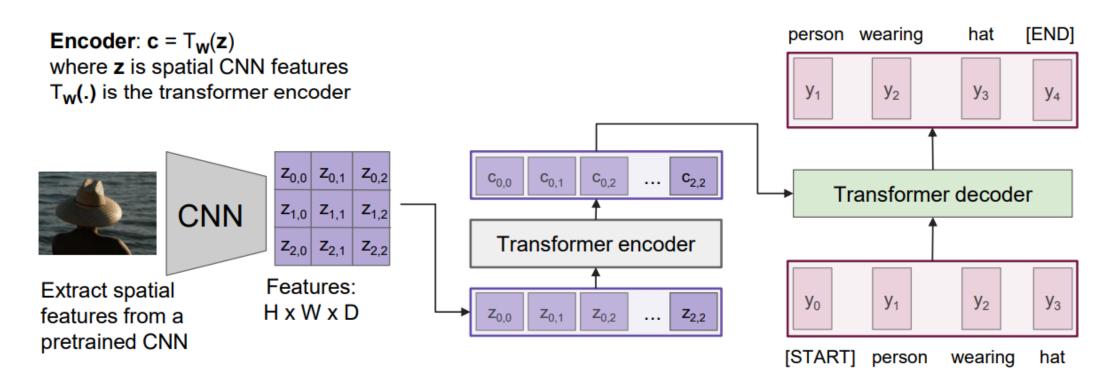
Image Captioning using Transformers

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

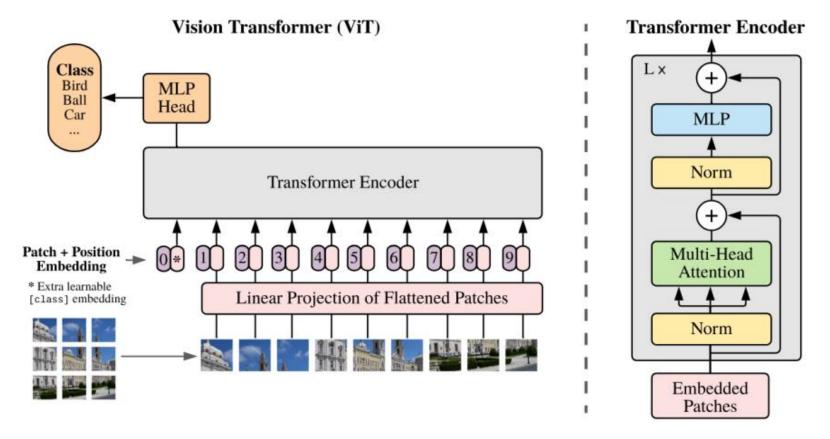
Decoder: $y_t = T_D(y_{0:t-1}, c)$

where $T_D(.)$ is the transformer decoder

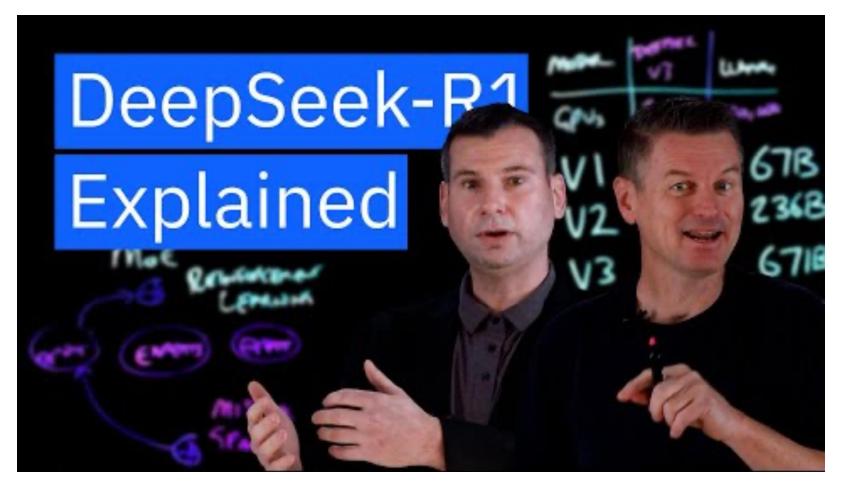


ViTs – Vision Transformers

Transformers from pixels to language



DeepSeek



https://www.youtube.com/watch?v=KTonvXhsxpc

This Lecture

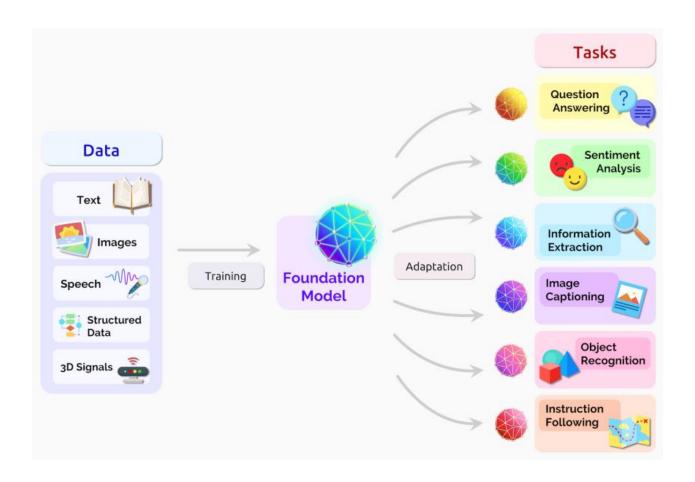
Recurrent Neural Network

Attention

Transformers

Pretrained Foundation Model

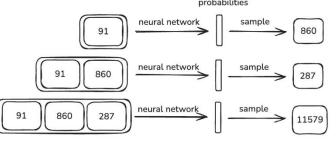
Foundation Models in Different Modalities

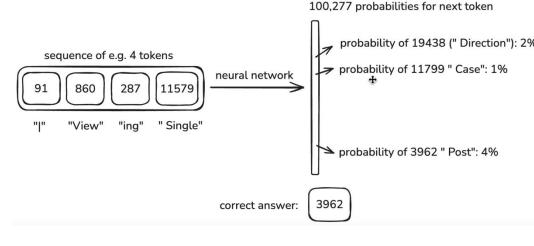


- Foundation model is trained on large amounts of unlabeled/selfsupervised data.
- A foundation model can centralize the information from all the data from various modalities.
- This one model can then be adapted to a wide range of downstream tasks.

Examples for Pre-training

- Download and preprocess the Internet
 - https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1
 - https://huggingface.co/datasets/HuggingFaceFW/fineweb
- Tokenization (GPT-4: 100,277 possible tokens)
 - https://tiktokenizer.vercel.app/
- Neural Network Training
 - https://bbycroft.net/llm
- Inference

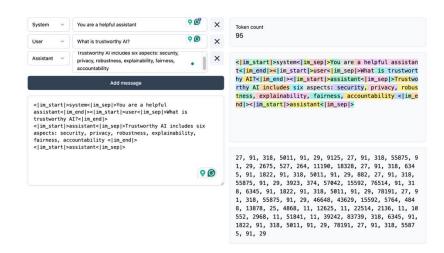




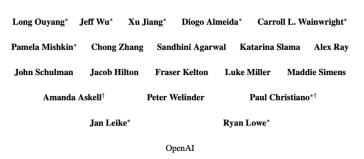
Source: https://www.youtube.com/watch?v=7xTGNNLPyMI

Examples for Post-training

- Base model: internet document simulator, stochastic, probabilistic
- Human conversation training
 - https://huggingface.co/datasets/OpenAssistant/oasst1
 - https://github.com/thunlp/UltraChat/tree/main



Training language models to follow instructions with human feedback



https://arxiv.org/pdf/2203.02155

RI HF

Other Foundation Model Designs in NLP

				De. Autoregressive		
2020	ACL	CamemBERT [87]	Transformer Encoder	Contextual	MLM(WWM)	https://camembert-model.fr
2020	ACL	XLM-R [88]	Transformer Encoder	Contextual	MLM	https://github.com//XLM
2020	ICLR	Reformer [89]	Reformer	Permutation	-	https://github.com//reformer
2020	ICLR	ELECTRA [46]	Transformer Encoder	Contextual	MLM	https://github.com//electra
2020	AAAI	Q-BERT [90]	Transformer Encoder	Contextual	MLM	-
2020	AAAI	XNLG [91]	Transformer	Contextual	MLM+DAE	https://github.com//xnlg
2020	AAAI	K-BERT [92]	Transformer Encoder	Contextual	MLM	https://github.com//K-BERT
2020	AAAI	ERNIE 2.0 [62]	Transformer Encoder	Contextual	MLM	https://github.com//ERNIE
2020	NeurIPS	GPT-3 [20]	Transformer Decoder	Autoregressive	LM	https://github.com//gpt-3
2020	NeurIPS	MPNet [57]	Transformer Encoder	Permutation	MLM+PLM	https://github.com//MPNet
2020	NeurIPS	ConvBERT [93]	Mixed Attention	Contextual	-	https://github.com//ConvBert
2020	NeurIPS	MiniLM [94]	Transformer Encoder	Contextual	MLM	https://github.com//minilm
2020	TACL	mBART [95]	Transformer	Contextual	DAE	https://github.com//mbart
2020	COLING	CoLAKE [96]	Transformer Encoder	Contextual	MLM+KE	https://github.com//CoLAKE
2020	LREC	FlauBERT [97]	Transformer Encoder	Contextual	MLM	https://github.com//Flaubert
2020	EMNLP	GLM [98]	Transformer Encoder	Contextual	MLM+KG	https://github.com//GLM
2020	EMNLP (Findings)	TinyBERT [99]	Transformer	Contextual	MLM	https://github.com//TinyBERT
2020	EMNLP (Findings)	RobBERT [100]	Transformer Encoder	Contextual	MLM	https://github.com//RobBERT
2020	EMNLP (Findings)	ZEN [64]	Transformer Encoder	Contextual	MLM	https://github.com//ZEN
2020	EMNLP (Findings)	BERT-MK [101]	KG-Transformer Encoder	Contextual	MLM	-
2020	RepL4NLP@ACL	CompressingBERT [35]	Transformer Encoder	Contextual	MLM(Pruning)	https://github.com//bert-prune
2020	JMLR	T5 [102]	Transformer	Contextual	MLM(Seq2Seq)	https://github.com/transformer
2021	T-ASL	BERT-wwm-Chinese [63]	Transformer Encoder	Contextual	MLM	https://github.com/BERT-wwm
2021	EACL	PET [103]	Transformer Encoder	Contextual	MLM	https://github.com//pet
2021	TACL	KEPLER [104]	Transformer Encoder	Contextual	MLM+KE	https://github.com//KEPLER
2021	EMNLP	SimCSE [105]	Transformer Encoder	Contextual	MLM+KE	https://github.com//SimCSE
2021	ICML	GLaM [106]	Transformer	Autoregressive	LM	-
2021	arXiv	XLM-E [107]	Transformer	Contextual	MLM	
2021	arXiv	T0 [108]	Transformer	Contextual	MLM	https://github.com//T0
2021	arXiv	Gopher [109]	Transformer	Autoregressive	LM	-
2022	arXiv	MT-NLG [110]	Transformer	Contextual	MLM	-
2022	arXiv	LaMDA [67]	Transformer Decoder	Autoregressive	LM	https://github.com//LaMDA
2022	arXiv	Chinchilla [111]	Transformer	Autoregressive	LM	-
2022	arXiv	PaLM [43]	Transformer	Autoregressive	LM	https://github.com//PaLM
2022	arXiv	OPT [112]	Transformer Decoder	Autoregressive	LM	https://github.com//MetaSeq

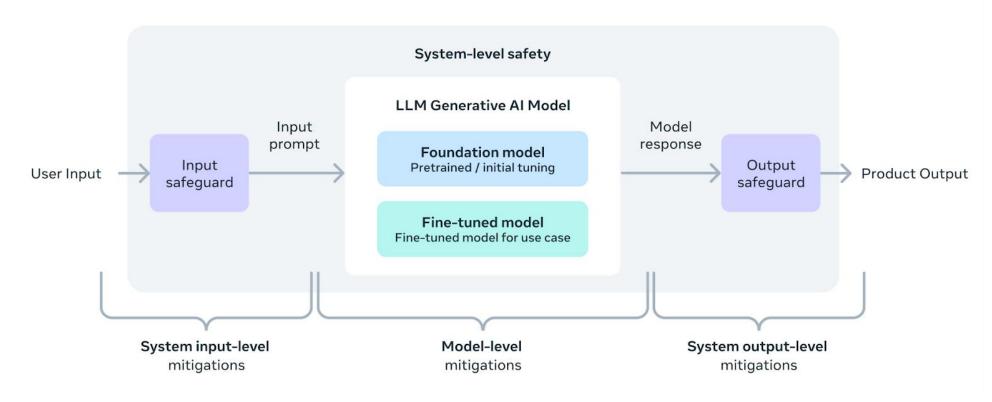
Other Foundation Model Designs in NLP

- Encoder-only: BERT
 - Bidirectional attention, low rank attention matrix
 - masked language modeling
 - understanding
- Encoder-Decoder: T5, BART
 - Large amount of parameters, hard to train
- Decoder-only: GPT
 - Next token prediction
 - Full rank attention matrix (e.g., unique solution, invertibility, represent richer feature space, capture diverse range of relationship within the data)
 - Understanding and generation
 - High zero-shot/few-shot generalization

Example: Llama 3

- Llama 3 uses a tokenizer with a vocabulary of 128K tokens that encodes language much more efficiently, which leads to substantially improved model performance.
- Llama 3 is pretrained on over 15T tokens that were all collected from publicly available sources.
- The training runs on two custom-built 24K GPU clusters.
- Instruction fine-tuning: post-training is a combination of supervised fine-tuning (SFT), rejection sampling, proximal policy optimization (PPO), and direct preference optimization (DPO).

The Safety Measures of LLM (Llama)



- Instruction-fine-tuned models have been red-teamed (tested) for safety.
- The red teaming approach leverages human experts and automation methods to generate adversarial prompts that try to elicit problematic responses.

Homework – Just Kidding

- 1. Implement a basic transformer model from scratch using PyTorch. Focus on the multi-head attention mechanism and positional encoding
- 2. Given a small transformer layer, walk through the forward pass for a 5-token sequence
- 3. How would you optimize memory usage when training a 175B parameter model on limited GPU memory?
 - Gradient checkpointing, model sharding, mix precision training, offloading, ZeRO optimizer, dynamic batching, gradient accumulation...

References

- https://cs231n.stanford.edu/slides/2024/lecture_7.pdf
- https://cs231n.stanford.edu/slides/2024/lecture_8.pdf
- On the Opportunities and Risks of Foundation Models
- A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT
- https://jalammar.github.io/illustrated-transformer/
- https://github.com/sooftware/attentions/blob/master/attentions.py